Vatansever, S. et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Medicinal Research Reviews vol. 41 1427–1473 (2021).
DOI: 10.4236/abb.2018.99028
Boniolo, F. et al. Artificial intelligence in early drug discovery enabling precision medicine. Expert Opin. Drug Discov. 16, 991–1007 (2021).
DOI: 10.4236/abb.2018.99028
Brunese, L., Mercaldo, F., Reginelli, A. & Santone, A. An ensemble learning approach for brain cancer detection exploiting radiomic features. Comput. Methods Programs Biomed. 185, 105134 (2020).
DOI: 10.4236/abb.2018.99028
Kim, C., Son, Y. & Youm, S. Chronic disease prediction using character-recurrent neural network in the presence of missing information. Appl. Sci. 9, 2170 (2019).
DOI: 10.4236/abb.2018.99028
Vellas, B., Bain, L. J., Touchon, J. & Aisen, P. S. Advancing Alzheimer’s Disease Treatment: Lessons from CTAD 2018. J. Prev. Alzheimer’s Dis. 6, 198–203 (2019).
DOI: 10.4236/abb.2018.99028
Ouss, L. et al. Behavior and interaction imaging at 9 months of age predict autism/intellectual disability in high-risk infants with West syndrome. Transl. Psychiatry 10, (2020).
DOI: 10.4236/abb.2018.99028
Ouss, L. et al. Developmental trajectories of hand movements in typical infants and those at risk of developmental disorders: An observational study of kinematics during the first year of life. Front. Psychol. 9, 1–15 (2018).
DOI: 10.4236/abb.2018.99028
Castro, M. P. et al. Utility of Serial Transcriptomic Analyses to Characterize the Resistome and to Refine Treatment Selection for Metastatic Colon Cancer: Case Report. Clin. Colorectal Cancer 20, 96–99 (2021).
DOI: 10.4236/abb.2018.99028
Rodon, J. et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat. Med. 25, 751–758 (2019).
DOI: 10.4236/abb.2018.99028
Bund, C. et al. An integrated genomic and metabolomic approach for defining survival time in adult oligodendrogliomas patients. Metabolomics 15, 1–11 (2019).
DOI: 10.4236/abb.2018.99028
Dilly, S. J. et al. Clinical Pharmacokinetics of a Lipid-Based Formulation of Risperidone, VAL401: Analysis of a Single Dose in an Open-Label Trial of Late-Stage Cancer Patients. Eur. J. Drug Metab. Pharmacokinet. 44, 557–565 (2019).
DOI: 10.4236/abb.2018.99028
Hampel, H. et al. Blood-based systems biology biomarkers for next-generation clinical trials in Alzheimer’s disease. 21, 177–191 (2019).
DOI: 10.4236/abb.2018.99028
Shen, Q. et al. A targeted proteomics approach reveals a serum protein signature as diagnostic biomarker for resectable gastric cancer. EBioMedicine 44, 322–333 (2019).
DOI: 10.4236/abb.2018.99028
Macias, A. E. et al. Mortality among hospitalized dengue patients with comorbidities in Mexico, Brazil, and Colombia. Am. J. Trop. Med. Hyg. 105, 102–109 (2021).
DOI: 10.4236/abb.2018.99028
Mereiter, S. et al. The Thomsen-Friedenreich Antigen: A Highly Sensitive and Specific Predictor of Microsatellite Instability in Gastric Cancer. J. Clin. Med. 7, 256 (2018).
DOI: 10.4236/abb.2018.99028
Here is a striking example of how we found key information in a very small population and successfully validated it on a much larger scale. By analyzing a few cases in selected small cities in Brazil, we unearthed crucial associations between diagnoses and operations in Brazil as a whole.
DOI: 10.4236/abb.2018.99028
Maciás, A. E. et al. Real-World Evidence of Dengue Burden on Hospitals in Mexico: Insights From the Automated Subsystem of Hospital Discharges (Saeh) Database. Rev. Investig. Clin. 71, 168–177 (2019).
DOI: 10.4236/abb.2018.99028
Werneck, G. L. et al. Comorbidities increase in-hospital mortality in dengue patients in Brazil. Mem. Inst. Oswaldo Cruz 113, 1–5 (2018).
DOI: 10.4236/abb.2018.99028
Hampel, H. et al. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer’s disease therapy: Analysis of the blarcamesine (ANAVEX2-73) Phase 2a clinical study. Alzheimer’s Dement. Transl. Res. Clin. Interv. 6, 1–15 (2020).
DOI: 10.4236/abb.2018.99028
Abtroun, L., Bunouf, P., Gendreau, R. M. & Vitton, O. Is the efficacy of milnacipran in fibromyalgia predictable? A data-mining analysis of baseline and outcome variables. Clin. J. Pain 32, 435–440 (2016).
DOI: 10.4236/abb.2018.99028
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nat. 2012 4837391 483, 603–607 (2012).
DOI: 10.4236/abb.2018.99028
Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nat. 2012 4837391 483, 570–575 (2012).
DOI: 10.4236/abb.2018.99028
Metz, J. T. et al. Navigating the kinome. Nat. Chem. Biol. 2011 74 7, 200–202 (2011).
DOI: 10.4236/abb.2018.99028
Keiser, M. J. et al. Predicting new molecular targets for known drugs. Nat. 2009 4627270 462, 175–181 (2009).
Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2008 261 26, 127–132 (2008).
DOI: 10.4236/abb.2018.99028
Hampel, H. et al. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer’s disease therapy: Analysis of the blarcamesine (ANAVEX2-73) Phase 2a clinical study. Alzheimer’s Dement. Transl. Res. Clin. Interv. 6, 1–15 (2020).
DOI: 10.4236/abb.2018.99028
Abtroun, L., Bunouf, P., Gendreau, R. M. & Vitton, O. Is the efficacy of milnacipran in fibromyalgia predictable? A data-mining analysis of baseline and outcome variables. Clin. J. Pain 32, 435–440 (2016).
DOI: 10.4236/abb.2018.99028
Jullian, N., Tognetti, Y. & Afshar, M. Applications of Rule-Based Methods to Data Mining of Polypharmacology Data Sets. Data Min. Drug Discov. 57, 241–256 (2013).
DOI: 10.4236/abb.2018.99028
Jullian, N., Jourdan, N. & Afshar, M. Hypothesis Generation for Scientific Discovery . Examples from the Use of KEM ® , a Rule-Based Method for Multi- Objective Analysis and Optimization. Towar. drugs Futur. key issues lead Find. lead Optim. (2008).
DOI: 10.4236/abb.2018.99028
Afshar, M., Dartnell, C., Luzeaux, D., Sallantin, J. & Tognetti, Y. Aristotle’s square revisited to frame discovery science. J. Comput. 2, 54–66 (2007).
DOI: 10.4236/abb.2018.99028
“Is the Efficacy of Milnacipran in Fibromyalgia Predictable? A Data-Mining Analysis of Baseline and Outcome Variables”, L Abtroun, P Bunouf, RM Gendreau and O Vitton, Clin. J. Pain, 32 (2016) 435–440.
DOI: 10.4236/abb.2018.99028
“Hypothesis Generation for Scientific Discovery. Examples from the Use of KEM®, a Rule-Based Method for Multi-Objective Analysis and Optimization”, Nathalie Jullian, Nathalie Jourdan, Mohammad Afshar, Solvay Pharmaceuticals Conferences, 18 (2008), 75-80.
DOI: 10.4236/abb.2018.99028