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Introduction

The growing number of anti-cancer drugs available at different
stages of clinical development and generalized use of combination
therapy further complexifies the early identification of companion
markers, markers of synergy as well as novel indications for existing

and new drug combinations.
Well characterized patient derived

a | xenograft mouse models (PDX),
ﬁ Pharmacodynamic combined  with  Artificial Intelligence

@ DNA (copy number) tools that can integrate and analyze the
- broad range of generated data can help address this

microarray) - challenge. PDX experiments provide an opportunity to

simulate a clinical assessment using multiple mice.

In this study, we developed a 8 Signature of response
PDX platform combined with 8
the KEM® Artificial Intelligence coon < e
data analytics, that is based on
Formal Concept Analysis, to
simulate a clinical trial and — ~"+~ FroiFox

identify biomarkers of response. "’

The platform was tested on colon cancer patient derived PDX.
Respectively mRECIST response and survival of respectively 21 and
26 PDXs against Oxalipaltin combined with 5-Fluorouracil (5-FU)
and folinic acid (Folfox) was experimentally assessed against a
placebo, simulating a clinical trial-like setting with 2 arms
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« 27 PDX models were exposed to 5-Fluorouracil (5-FU), Oxaliplatin or FOLFOX. In a former
study [1], tumor response was assessed using mRECIST for each drug, and survival was
assessed for FOLFOX only, in comparison with a vehicle (control).

 PDX were previously [2] characterized with copy number (CGH array, Human Genome CGH
Microarray-244A, Agilent Technologies, 25 869 genes) and transcriptomic (micro array,
U133A GeneChip, Affymetrix, 12 112 genes) data for 26 and 21 PDX respectively.

* CGH data was limited to 409 genes relevant in oncology [3]. Copy numbers that covers the
same PDX were clustered together, leading to 276 clusters of copy numbers

 Micro array data was analyzed using GSVA [4], limited to 2463 pathways (pathways with <
10 genes or > 500 genes were excluded) ; for each drug, top pathways were selected by
computing moderated t-test of differential expression by empirical Bayes moderation from
microarray linear model fitting [5]. Only genes from top pathways with p-value<0.01 were
retained. Additional genes, not present in pathways, were also selected by the same
method, thus leading to an overall number of 102 genes for 5-FU (74 genes in 4 pathways),
69 genes for Oxaliplatin (52 genes in 3 pathways), and 74 genes for FOLFOX (42 genes in 2
pathways)

Data handling Artificial Intelligence

* Tumor response data and survival | « Formal Concept Analysis as ¢« KEM® (Knowledge Extraction Management) can

were discretized in 2 groups (‘low/, implemented in the KEM®  combine multiple data sources and overcomes
‘high’) of 13 PDX separated by the platform generates all hypotheses the over fitting challenge of analysis of
median: 2-tiles discretization consistent with the data in the biomarker data in small clinical studies [6]

« Gene expression levels were form of association rules. ,
discretized in 3 groups (‘low’, Example Support Number of times that the rule is checked in the dataset
‘medium’, ‘high’) with 8 or 9 PDX in Confidence ) Proportion of cases verifying

each groups: 3-tiles discretization
 Copy number was not modified as
. { )
values are already discrete ( /055' manner. These rules are characterized by
’gain’, ‘no change’) 4 metrics that help ranking them.
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Results
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P-value Fisher’s exact test

Gene 1 = High and TumorReduction= High

Lift Ratio of the observed support to that expected if
Gene 1 = High and TumorReduction= High
were independent.

KEM® Biomarker

multiple rules.

* Performances of predictive signatures are
assessed using metrics: sensitivity,

specificity, efficiency, positive and negative
predictive values.
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KEM® Clinical

* Identify variables alone and in combinations | * Systematic analysis to identify all patient characteristics at Baseline,

that best predict a binary outcome.
* Systematic exploration of combinations of
variables.
* Predictive signhatures derived from one or

or combination of characteristics, linked to outcomes, at multiple
time points.

* Each interaction’s significance statistically characterized.

e Each interaction’s amplitude is assessed using hazard ratio (HR) for

continuous outcome, as well as odds-ratio (OR) for binary outcome.

* Odds-ratio represent the odds of outcome improvement during the
whole trial period

* Hazard-ratio represent the immediate chance of improvement at a
given time point.
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Conclusion

This work demonstrates the ability of an Artificial
Intelligence platform using PDX to simulate clinical trials
and identify biomarkers of drug efficacy and synergy.
Candidate biomarkers were identified using the KEM®
platform through automated workflows that can be easily
repeated, deployed, and adapted to other omics data.

Systematic identification of both biomarker for tumor
response and survival can be performed in parallel, thus
enabling to extract knowledge that has an impact at the
molecular level (tumor response) as well as at the clinical
one (survival).

The platform’s can be used for drug repositioning or
identification of innovative drug combinations, while
maintaining a high level of robustness.

This study will be further extended to other indications
(breast and lung), with the aim of validating the
signatures obtained here in another cohort of PDX.
Moreover, whole exome sequencing and RNA-seq data
will be included.

We believe this work paves the way towards innovative
Precision Medicine clinical trials, in which simulations
performed in PDX and analyzed using Artificial Intelligence
will deliver actionable hypothesis for patients inclusion
and study extension designs.
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